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Abstract

This paper reports the analytical and numerical modeling of transient–dynamic response of tubes to internal detonation

loading. Since gaseous detonation involves loads that propagate at high speeds, the excitations of flexural waves in the tube

wall become significant. Flexural waves can result in high strains, which may exceed the equivalent static strains by up to a

factor of 4. The presented analytical model, which considers the effects of transverse shear and rotary inertia, provides a

very good simulation of the structural response of cylindrical tubes with finite length to internal detonation loading. It is

shown that the predictions provided by this model are in better agreement with the experimental results, as compared to

the existing analytical models. In the numerical part of this study, several finite element analyses are carried out to obtain

the structural response of the tube to pressure loads moving at different speeds. The results of the analytical and numerical

simulations are compared with experimental results reported in the literature.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A detonation consists of a shock wave and a reaction zone that are tightly coupled. An ideal detonation
travels at a nearly constant speed close to the Chapman–Jouguet velocity (Vcj), which is between 1500 and
3000m/s in gases depending on the fuel–oxidizer combination. The pressure just behind the detonation can be
as high as 20–30 times the ambient pressure. A typical experimental pressure–time trace and an ideal profile
for a detonation are shown in Fig. 1 [1]. The almost instantaneous jump in pressure at time zero corresponds
to the passage of the detonation wave past the measuring point. The more gradual decrease in pressure up to
0.25ms and the plateau for longer times are associated with the gas dynamics of the flow behind the wave. The
pressure history for this type of loading may be represented by an exponential approximation to the
Taylor–Zeldovich model and can be characterized by the initial pressure p1, the peak pressure p2, the final
pressure p3, the exponential decay factor T, and the velocity Vcj [1] as follows:

pðtÞ ¼ ðp1 � patmÞ þ ½ðp3 � p1Þ þ ðp2 � p3Þe
�t=T �½1�Hðx� V cjtÞ�. (1)
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A0 dispersion premultiplication factor, di-
mensionless

A2 dispersion premultiplication factor, di-
mensionless

A4 dispersion premultiplication factor, di-
mensionless

E Young’s modulus, N/m2

F dimensionless loading function, dimen-
sionless

Fd dimensionless dynamic loading function,
dimensionless

Fs dimensionless static loading function,
dimensionless

G shear modulus, N/m2

h shell thickness, m
L length of shell, m
n mode index, dimensionless
N parameter defined in Eq. (29)
p1 pre-detonation pressure, Pa
p2 maximum-detonation pressure, Pa
p3 post-shock pressure, Pa
patm atmospheric pressure, Pa
pcj Chapman–Jouguet pressure, Pa
R shell mean radius, m
Rin inner radius of shell, m
Rout outer radius of shell, m
t time, s
T exponential decay factor, s
Tn Time-dependent part of the

solution (s)
u axial deflection, m

u dimensionless axial deflection, dimen-
sionless

V load speed, m/s
Vc0 critical velocity, m/s
Vc1 shear wave velocity, m/s
Vc2 dilatational wave velocity in a bar, m/s
Vc3 dilatational wave velocity, m/s
Vcj Chapman–Jouguet velocity, m/s
Vd dilatational wave speed, m/s
Vs shear wave speed, m/s
w radial deflection, m
w dimensionless radial deflection, dimen-

sionless
wb dimensionless radial deflection, bending,

dimensionless
wI

b dimensionless radial deflection region I,
dimensionless

wII
b dimensionless radial deflection region II,

dimensionless
x axial coordinate, m
Xn eigenmodes, dimensionless
b shell thickness parameter, dimensionless
Z dimensionless (moving) axial coordinate,

dimensionless
k shear correction factor, dimensionless
Lj excitation parameter ( j ¼ 1, 2, 3), dimen-

sionless
Ld

j excitation parameter ( j ¼ 1, 2, 3), dimen-
sionless

Ls
j excitation parameter ( j ¼ 1, 2, 3), dimen-

sionless
n Poisson’s ratio, dimensionless
r density, kg/m3
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Fig. 1. Pressure versus time for detonation loading: (a) measured; (b) ideal model [1].
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In the above equation, patm is the atmospheric pressure, x is the distance variable, t is the time variable and
H is the step function.

Static pressure vessel design starts by considering the deflections that will be produced by a given internal
pressure. Under dynamic loading conditions, the actual deflections will be further amplified by response of the
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Fig. 2. Example of circumferential strain versus time for detonation loading. The interference patterns are due to the reflected waves

associated with the clamp at nearby end of the tube segment [1].
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structure to a time-dependent load. Therefore, an important factor in design for dynamic loading is the
amplification factor, which is defined as the ratio of the maximum strain to the static strain for the same
nominal loading pressure (Chapman–Jouguet pressure). The amplification factor, also referred to as the
dynamic load factor, may be defined as

Amp:Fac: ¼
wdyn;max

wst
. (2)

For simple structures that can be described with a single degree of vibrational freedom, the highest value
that the amplification factor can assume is 2. However, for a continuous structure with a traveling load, no
such simple estimate appears to be possible and more detailed considerations are needed.

From the structural point of view, the tube in which the detonation occurs experiences a traveling internal
load that produces transient deformations. Fig. 2 shows the measured circumferential strain as a function of
time for a tube with internal detonation loading [1]. The strain history shows a sharp peak when the
detonation passes the measurement point (at t ¼ 2.9ms). For detonation loading, the circumferential strain
can exceed the equivalent static strain (obtained for the tube under the static pressure Pcj) by up to a factor of
3–4. Such experimental results indicate that a simple static model of the tube cross-section is not sufficient for
describing the dynamic nature of the strain distribution in the tube.

There have been several investigations dealing with the structural response of shells to internal shock or
detonation loading [2–10], a brief review of those can be found in Ref. [1]. The first comprehensive theories for
predicting the elastic response of a tube to a moving load were developed by Tang [11] and Reismann [12].
Tang [11] presented a model to predict the response of a thin shell to internal shock loading. By assuming a
tube of infinite length, the problem was reduced to a ‘‘steady state’’ problem and an analytical solution for
the shell motion was obtained. This model predicts the existence of a so-called critical velocity. When the
pressure load travels at this critical speed, the solution for the radial tube motion becomes unbounded.
Reismann [12] developed a model that includes the effect of prestress on the structural response and gave
an elegant explanation of how the resonant coupling between a moving load and the flexural waves comes
about [1].
2. Analytical models

We start this section with a brief review of some of the available analytical models including the thin infinite

shell with rotary inertia and shear deformation (Tang model), and the transient model without rotary inertia and

shear deformation [13]. In sequel, the validity of a new transient model for a finite tube, which includes the

effects of rotary inertia and shear deformation [14], will be investigated through comparisons with experimental
results reported in the literature and finite element simulations.
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2.1. Thin infinite shell including rotary inertia and shear deformation (Tang model)

Tang’s model [11] is based on a thin-shell approximation, but includes the effects of rotary inertia and
transverse shear deformation. In this model, the detonation loading with a definite pressure profile moves with
constant speed (Vcj) along the tube. The model is steady state in the sense that the transient development of the
tube deformation is ignored and the response is assumed to be time-independent in the frame of reference of
the detonation front. The model provides an analytical solution for the deformation, which exhibits the
excitation of flexural waves and the existence of a critical speed. However, the response is obviously unrealistic
(unbounded) at the critical speed and such features of real tubes as finite length and supports or flanges cannot
be handled.

We start with the definition of the following dimensionless quantities which will facilitate the derivation of
the equations:

u ¼
u

h
; w ¼

w

h
; Z ¼

ffiffiffiffiffi
12
p

h
ðx� VtÞ (3)

in which u and w are the longitudinal and radial displacements respectively, and h is the shell
thickness.

In fact, by introducing Z, the two variables x and t are combined into one variable. As shown in the Fig. 3,
two regions can be distinguished in the tube. In region I, Zo0 and the detonation front has passed the points
in this region. In region II, Z40 and the detonation front has not yet arrived.

The following parameters are used in the analysis:

Li ¼
piR

2

Eh2
excitation parameters ðj ¼ 1; 2 or 3Þ;

V d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rð1� n2Þ

s
dilatational wave velocity;

V s ¼

ffiffiffiffiffiffiffi
kG

r

s
shear wave velocity;

b ¼
hffiffiffiffiffi
12
p

R
shell thickness parameter:

Using the above variables and parameters, the following differential equation can be considered to govern
the structural response of the tube in the Tang model [13]

A4
q4w

qZ4
þ A2

q2w
qZ2
þ A0w ¼ F ðZÞ, (4)
Detonation 
front

�<0

x

Region I 
�<0

Region II 

Fig. 3. Dimensionless variable Z.
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where the coefficients are given by

A4 ¼ V=V d

� �2
� 1

h i
V=V s

� �2
� 1

h i
,

A2 ¼ V=Vd

� �2
1þ b2 V d=V s

� �2h i
� b2 1� n2

� �
Vd=Vs

� �2
,

A0 ¼ b2 þ
b2n2

V=V d

� �2
� 1

h i ,
F ðZÞ ¼ 1� n2

� �
b2 L1 þ L3 � L1ð Þ 1�H Zð Þð Þ þ L2 � L3ð ÞeZ=Z0 1�H Zð Þð Þ

h i
. ð5Þ

In these expressions, HðZÞ is the step function and Z0 ¼
ffiffiffiffiffi
12
p

VT=h.
By solving the dispersion equation, four critical velocities are obtained:
�
 VC0: the value of the critical velocity VC0 can be calculated from the vanishing of the discriminant
A2

2 � 4A0A4 ¼ 0.

�
 VC1: the shear wave speed Vs. ffiffiffiffiffiffiffiffiffiffiffiffiffip

�
 VC2: the dilatational wave speed in a bar V d 1� n2.

�
 VC3: the dilatational wave speed Vd.
Based on the values of the speed V, five different cases can be distinguished. In the present investigation, only the

first two are relevant. In the first case, 0oVoV C0; the values of a (roots of characteristic equation) are complex:
a ¼ �n� im. In the second case, VC0oVoVC1, the values of a are purely imaginary: a ¼ �im1 and a ¼ �im2.

2.1.1. Case 1: 0oVoVC0

In this case, flexural displacements of the tube in the regions I and II are

wI
b ¼

n2 �m2

4nm
Ls

3 � Ls
1

� �
þ Ld

2 � Ld
3

� �� �
enZ sinmZ

þ
�1

2
Ls

3 � Ls
1

� �
þ
�1

2
Ld

2 � Ld
3

� �� �
enZ cosmZ

þ Ld
2 � Ld

3

� � �1

4mðn2 þm2Þ

1

Z30
�

1

4nm

1

Z20
þ

n2 � 3m2

4m n2 þm2ð Þ

1

Z0

� 	
enZ sinmZ

þ
Ld

2 � Ld
3

� �
4n n2 þm2ð Þ

1

Z30
þ

m2 � 3n2

Z0

� 	
enZ cosmZþ Ls

3 þ Ld
2 � Ld

3

� �
eZ=Z0 ,

wII
b ¼

n2 �m2

4nm
Ls

3 � Ls
1

� �
þ Ld

2 � Ld
3

� �� �
e�nZ sinmZ

þ
1

2
Ls

3 � Ls
1

� �
þ

1

2
Ld

2 � Ld
3

� �� �
e�nZ cosmZ

þ Ld
2 � Ld

3

� � 1

4m n2 þm2ð Þ

1

Z30
�

1

4nm

1

Z20
�

n2 � 3m2

4m n2 þm2ð Þ

1

Z0

� 	
e�nZ sinmZ

þ
Ld

2 � Ld
3

� �
4n n2 þm2ð Þ

1

Z30
þ

m2 � 3n2

Z0

� 	
e�nZ cosmZþ Ls

1. ð6Þ

2.1.2. Case 2: VC0oVoVC1

Here, the flexural displacements of the tube in the regions I and II are

wI
b ¼

1

m1 m2
1 �m2

2

� � m2
2 þ

1

Z20

� 	
1

Z0
Ld

2 � Ld
3

� �
sinm1Zþ Ls

3 þ Ld
2 � Ld

3

� �
eZ=Z0

þ
m2

2

m2
1 �m2

2

Ls
3 � Ls

1

� �
þ

m2
2

m2
1 �m2

2

Ld
2 � Ld

3

� �
þ

1

m2
1 �m2

2

1

Z20
Ld

2 � Ld
3

� �� 	
cosm1Z,
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wII
b ¼

1

m2 m2
1 �m2

2

� � m2
1 þ

1

Z20

� 	
1

Z0
Ld

2 � Ld
3

� �
sinm2Zþ Ls

1

þ
m2

1

m2
1 �m2

2

Ls
3 � Ls

1

� �
þ

m2
1

m2
1 �m2

2

Ld
2 � Ld

3

� �
þ

1

m2
1 �m2

2

1

Z20
Ld

2 � Ld
3

� �� 	
cosm2Z. ð7Þ

In Eqs. (6) and (7) the parameters Ls
i and Ld

i are

Ls
i ¼

b2 1� n2
� �

Li � Latmð Þ

A0
; Ld

i ¼
b2 1� n2
� �

Li � Latmð Þ

A4=Z40 þ A2=Z20 þ A0

� � . (8)

2.2. Transient model I [1]

The ‘‘steady state’’ model has severe limitations for making realistic predictions, particularly near the
critical velocity, where the response is predicted to be infinite. The most accurate quantitative method to solve
this problem is to use the finite element method (FEM). A less accurate but somewhat simpler method is to
consider additional simplifications to the model and simplify the governing equation so that the classical
methods of analysis can be used to construct a time-dependent solution. The simplifications for Model I were
to neglect the effects of transverse shear and rotary inertia which is equivalent to taking V s !1 and V=V d51
[1]. Accordingly, the solution was obtained as an infinite series of normal modes with time-dependent
coefficients computed from the prescribed loading function. The complete solution for the specific cases of a
finite length thin shell with either simply supported or clamped end conditions can be found in Ref. [1]. As a
starting point for the analytical transient model, the following equation was used [13]:

q4w

qx4
þ

12

h2V 2
d

q2w

qt2
þ

122b2ð1� n2Þ

h4
w ¼

122

h3
F ðx; tÞ. (9)

Here F ðx; tÞ is the transient loading function. For detonation loading, F ðx; tÞ is

F ðx; tÞ ¼ b2ð1� n2ÞL1 þ b2ð1� n2Þ½ðL3 � L1Þ þ ðL2 � L3Þe
ðx�VtÞ=VT � 1�Hðx� VtÞð Þ. (10)

The complete solution of the above equation can be found in Ref. [1].

2.3. Transient model II

In this section, the solution for the general problem is considered and applied to the specific case of a finite-
length thin tube with simply supported condition.

Using Eqs. (4) and (5), the following governing equation can be developed for modeling the analytical
transient behavior of the tube [14].

q4w

qx4
þ

1

V2
dV 2

s

q4w
qt4
�

1

V2
d

þ
1

V 2
s

 !
q4w

qx2qt2
þ

12

h2V2
d

1þ b2
V 2

d

V 2
s

 !
q2w
qt2

,

�
12b2ð1� n2Þ

h2

V2
d

V 2
s

q2w
qx2
þ

122b2

h4
1�

n2

1� ðV=Vd Þ
2

 !
w ¼

122

h3
F ðx; tÞ.

wð0; tÞ ¼ wðL; tÞ ¼ 0;

q2w
qx2






x¼0

¼
q2w
qx2






x¼L

¼ 0;

8><
>:

wðx; 0Þ ¼ ws;

qw

qt






t¼0

¼ 0;

8><
>: ð11Þ

where w ¼ wh, F ðx; tÞ is the transient loading function, and ws is the initial deflection due to static loading.
Now we will examine the coefficient of the second term of the above equation in more detail

1

V 2
dV 2

s

¼
r2

E2

2ð1þ nÞ2ð1� nÞ
k

. (12)
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It turns out that the value of this coefficient is on order of 1� 10�13 and we may ignore it without any loss of
generality. In order to simplify the solution procedure we may define the following parameters:

a2 ¼
1

V 2
d

þ
1

V2
s

; b2
¼

12

h2V2
d

1þ b2
V 2

d

V2
s

 !
; c2 ¼

12b2ð1� n2Þ

h2

V2
d

V 2
s

,

e2 ¼
122b2

h4
1�

n2

1� ðV=VdÞ
2

 !
; qðx; tÞ ¼

122

h3
F ðx; tÞ. ð13Þ

Accordingly, Eq. (11) can be written as

q4w

qx4
� a2 q4w

qx2qt2
þ b2 q

2w

qt2
� c2

q2w
qx2
þ e2w ¼ qðx; tÞ. (14)

For detonation loading Eq. (10) is used. Eq. (14) may be solved using the technique of separation of
variables by writing the general form of the solution as an expansion of eigenmodes:

wðx; tÞ ¼
X1
n¼1

TnðtÞX nðxÞ. (15)

In which Xn(x) are the eigenmodes and Tn(t) is the time-dependent part of the solution.
The eigenmodes can be obtained by solving the following differential equation:

d4X n

dx4
þ l1n

d2X n

dx2
þ l2nX n ¼ 0. (16)

The solution can be shown to be

X n ¼ C1e
Ax þ C2e

�Ax þ C3e
Bx þ C4e

�Bx. (17)

The coefficients Ci in Eq. (17) can be obtained based on the boundary conditions of the problem (Eq. (11))
and the orthonormality property of eigenmodes. The result gives

X n ¼

ffiffiffiffi
2

L

r
sin

np
L

x
� �

; n ¼ 1; 2; . . . (18)

Having obtained the eigenmodes, we proceed towards finding the solution of the non-homogenous form of
Eq. (14). We may expand q(x, t) in terms of the eigenmodes as

qðx; tÞ ¼
X1
n¼1

QnðtÞX nðxÞ. (19)

Due to the orthonormality of eigenmodes the coefficients can be found from

QnðtÞ ¼

Z L

0

qðx; tÞX nðxÞ dx. (20)

Substituting for q(x, t) into (14) we may write

�a2 d
2X n

dx2
þ b2X n

� 	
d2TnðtÞ

dt2
þ �ln

d2X n

dx2
� c2

d2X n

dx2
þ e2X n

� 	
TnðtÞ ¼ QnX n. (21)

From Eq. (18) we may conclude that

d2X n

dx2
¼ �lnX n. (22)

Substituting the above equation into Eq. (21) results in

ða2ln þ b2
Þ
d2TnðtÞ

dt2
þ ðl2n þ c2ln þ e2ÞTnðtÞ ¼ Qn (23)
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which in combination with Eq. (20) will give the following differential equation for the time-dependent part of
the general solution

d2TnðtÞ

dt2
þ o2

nTnðtÞ ¼

R L

0 qðx; tÞX nðxÞ dx

a2ln þ b2
. (24)

In the above we have

on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2n þ c2ln þ e2

a2ln þ b2

s
. (25)

The solution of the above equation comprises of the homogenous and the non-homogenous parts. The
homogenous solution is

TnðtÞ ¼ An sinðontÞ þ Bn cosðontÞ. (26)

In order to find the non-homogenous solution, we divide the load function into the static and dynamic
parts. The static part of the detonation loading obtained from Eq. (10) is

qns ¼
122

h3
b2ð1� n2ÞL1. (27)

Hence the static part of the non-homogenous solution would be

Tns ¼
N

o2
n

� 	
L1ð1� cosðnpÞÞ (28)

in which N is

N ¼

ffiffiffiffi
2

L

r
122b2ð1� n2Þ

h3
ða2ln þ b2

Þ

L

np
. (29)

The dynamic part of the detonation loading would be

qdðtÞ ¼
122

h3
b2ð1� n2Þ ðL3 � L1Þ þ ðL2 � L3Þe

ðx�VtÞ=VT
h i

. (30)

Accordingly, the dynamic part of the non-homogenous solution is

TndðtÞ ¼
�N

o2
n �

npV

L

� 	2
 ! ðL3 � L1Þ þ

1

1þ
L

npVT

� 	2
ðL2 � L3Þ

2
6664

3
7775 cos

npVt

L

� 	

þ
N

o2
n �

npV

L

� 	2
 ! L

npVT

1

1þ
L

npVT

� 	2
ðL2 � L3Þ

2
6664

3
7775 sin

npVt

L

� 	

þ
N

o2
n þ

1

T

� 	2
 ! 1

1þ
L

npVT

� 	2
ðL2 � L3Þe

�t=T þ
N

o2
n

ðL3 � L1Þ

2
66664

3
77775. ð31Þ

The complete form of the time-dependent part of the general solution would be

TnðtÞ ¼ Tns þ TndðtÞ þ An sinðontÞ þ Bn cosðontÞ. (32)
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The coefficients An and Bn can be obtained from the initial conditions and can be shown to be

An ¼
NT

on

npV

L

� 	2

npV

L

� 	2

þ
npV

L

� 	2

o2
nT2 � o4

nT2 � o2
n

ððL2 � L1Þ � ðL3 � L1ÞÞ,

Bn ¼ �
N

o2
n

npV

L

� 	2

npV

L

� 	2

þ
npV

L

� 	2

o2
nT2 � o4

nT2 � o2
n

ððL3 � L1Þ þ o2
nT2ðL2 � L1ÞÞ. ð33Þ

Having found all the required terms, the general solution can be obtained from the following equation,
along with Eqs. (28), (31) and (33).

wðx; tÞ ¼
X1
n¼1

½Tns þ TndðtÞ þ An sinðontÞ þ Bn cosðontÞ�

ffiffiffiffi
2

L

r
sin

np
L

x
� �" #

. (34)

3. Finite element simulations

In previous sections, analytical models were presented for the transient behavior of finite length tubes. An
alternative approach is to use the FEM, which enables a more realistic modeling of geometries and boundary
conditions. The finite element simulations were carried out using the LS-DYNA V960 package, which has
wide abilities in solving dynamic problems. Several transient linear elastic analyses was carried out to calculate
the structural response of the tube to a moving pressure load, using 500 rotary symmetric solid elements in the
axial direction and five solid elements in the radial direction (Fig. 4).

The transient loading was represented by prescribing force as a function of time at each element (Fig. 5).
The force history for each node was a discrete version of the exponential approximation to the
Taylor–Zeldovich model. The moving load was simulated by considering the difference in detonation arrival
time at each element. Calculations were carried out for a clamped tube and a simply supported tube (Fig. 4),
where Rin is the internal radius of the tube. In these simulations the effects of reflection of structural waves
were not considered. The results of the analyses are presented in subsequent sections.

4. Results and discussion

In this section the results obtained from Model II are compared with other analytical models, finite element
results, and the experimental results reported in literature [1,13]. In these experiments a stoichiometric
hydrogen–oxygen mixture with a variable amount of argon, as diluents, was used [1]. The amount of argon
NAr was used to control the velocity of the detonation over a range of 1300–2800m/s, bracketing the critical
velocity. The material and geometrical properties of the tube are shown in Table 1, and the positions of strain
gauges are depicted in Fig. 6 and listed in Table 2.

4.1. Representative strain histories

Experimental strain histories for gauges 5 and 10 are given in Fig. 7 [1]. Gauge 5 is mounted in the first half
of the second tube section, 0.79m from the entrance to that section, and gauge 10 is mounted near the end of
the second tube section, 2.195m from the entrance to that section. In Fig. 7, the top plot is the strain history
for a subcritical velocity (1400.1m/s), the middle plot is the strain history for a velocity around the critical
velocity (1478.8m/s), and the bottom plot is the supercritical strain history (1699.7m/s). For detonation
speeds of 1400.1, 1478.8, and 1699.7m/s, it takes 5.10, 4.83, and 4.20ms, respectively, to cover the length of
the tube. The maximum pressures p2, for the above speeds, are 1.2, 1.35 and 1.7MPa respectively. For all
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Fig. 4. Geometry and boundary conditions of the model: (a) clamped support and (b) simple support.
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Fig. 5. Schematic of moving load.
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cases, the initial pressure p1 and final pressure p3 are zero and T ¼ 4.34� 10�4. The spike or glitch at about
100ms is actually due to the electric discharge used to start the detonation [1].
4.2. Verification of the models

Fig. 8 shows the circumferential strain versus time computed using the Tang model. Since the steady-state
model gives results that are independent of gauge position, only one trace is shown for each velocity case. For
this model the corresponding critical velocity is 1455m/s. The critical velocity obtained from experimental
results is 1450m/s [1]. The difference between subcritical and supercritical cases is striking with the very high
decay rates for all oscillations in the subcritical case. The precursor extends far ahead of the main signal in the
supercritical case. The peak amplitudes of the strains are in reasonable agreement with observation [1].

Computations using the transient analytical models for gauges 5 and 10 are shown in Figs. 9 and 10,
respectively. Note that the arrival times on the experimental plots are adjusted to be directly comparable with
analytical results.

It is evident that the results obtained from transient models are much more realistic than the steady-state
model and clearly show that the development of many features in the strain signals is a consequence of
unsteady behavior. Both the development of the precursors in gauge 10 and the modulation of the oscillations
of the main signal are predicted by the transient analytical models. As shown subsequently, the predicted
amplitudes of the transient models are also in reasonable agreement with the experimental results.

Also note that, due to inclusion of the effects of transverse shear and rotary inertia, the predictions of Model
II are in better agreement with the experimental results. For instance, it is seen from Fig. 10(b) that for the
gauge 10 the vibrational spectrum of the main signal predicted by Model I resides above the line
STRAIN ¼ 0. Whereas the behavior predicted by Model II shows a very good agreement with the pattern of
the experimental results.

Nevertheless there are some discrepancies between the experimental results and those predicted by Model II.
These can be attributed to: (a) the effect of reflected flexural wave is not considered in the model and (b) the
detonation tube is in fact a thick shell while this is a thin shell model.
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Fig. 7. Measured strain signals. Left gauge 5, and right gauge 10: (a) detonation velocity of 1400.1m/s; (b) detonation velocity of

1478.8m/s and (c) detonation velocity of 1699.7m/s [1].

Table 1

Material and geometrical properties of the tube [1]

r (kg/m3) E (N/m2) n Rout (m) Rin (M) 3L (m)

8� 103 193� 109 0.23 0.1651 0.1397 7.14

1 2 3 4 5 6 7 8 910

L
xI

xII

Igniter Flange End Plate

Fig. 6. Detonation tube and positions of strain gauges [1].

Table 2

Positions of strain gauges [1]

gauge 1 2

xI(m) 1.181 1.951

gauge 3 4 5 6 7 8 9 10

xII(m) 0.248 0.433 0.79 1.181 1.567 1.951 2.085 2.195
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4.2.1. Comparison with FEM

The obtained results from FEM simulations, along with the results of transient analytical model II and the
experimental results [1,13], are shown in Figs. 11 and 12 for gauges 5 and 10, respectively. Note that the arrival
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Fig. 9. Left column shows transient model I, right column shows transient model II, and middle column shows experimental strain

predictions [1], for gauge 5: (a) detonation velocity of 1400.1m/s; (b) detonation velocity of 1478.8m/s; (c) detonation velocity of 1699.7m/s.
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Fig. 8. Tang model strain predictions: (a) detonation velocity of 1400.1m/s and (b) detonation velocity of 1478.8m/s.
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times on the experimental plots are reduced to be comparable with the FEM and analytical results. Moreover,
as it was observed that the FEM results obtained for the two different support conditions were the same, only
the results for the simply supported case are reported. From the above figures it is clear that there is excellent
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Fig. 10. Left column shows transient model I, right column shows transient model II, and middle column shows experimental strain

predictions [1] for gauge 10: (a) detonation velocity of 1400.1m/s; (b) detonation velocity of 1478.8m/s and (c) detonation velocity of

1699.7m/s.
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agreement between the FEM results and the results of Model II. In general, the maximum strain amplitude
obtained from FEM is in better agreement with the experiment. The discrepancies between the analytic
(Model II) and FEM results with the experimental results may be attributed to the effects of reflected waves
which were not considered in the former methods.

4.3. Amplifiicatiion factors

One of the main objectives of this investigation has been the determination of amplification factors. The
amplification factor is a convenient way to represent the peak loads that can be expected and can be used by
designers to incorporate the appropriate safety factors into the specification of piping systems that will be
subjected to detonations.

The most important parameter in determining the amplification factor is the detonation wave speed.
Amplification factors computed for four positions corresponding to gauges 3, 5, 7 and 10 (see Fig. 6) and wave
speeds between 1300 and 2800m/s, are shown in Fig. 13.

The results in Fig. 13 clearly demonstrate the transient nature of the process, the amplification factor
develops as a function of distance. For strain gauge 3, flexural waves do not develop and critical velocity



ARTICLE IN PRESS

0.0002

0.0001

-0.0001

-0.0002

0

St
ra

in

0 0.001 0.002 0.003
Time_sec

0.0002

0.0001

-0.0001

-0.0002

0

St
ra

in

(a)
0 0.001 0.002 0.003

Time_sec

0.0002

0.0001

-0.0001

-0.0002

0

St
ra

in

0 0.001 0.002 0.003
Time_sec

0.0002

0.0001

-0.0001

-0.0002

0

St
ra

in

0 0.001 0.002 0.003
Time_sec

0.0002

0.0001

-0.0001

-0.0002

0

St
ra

in

0 0.001 0.002 0.003
Time_sec

0.0002

0.0001

-0.0001

-0.0002

0
St

ra
in

0 0.001 0.002 0.003
Time_sec

0.0002

0.0001

-0.0001

-0.0002

0

St
ra

in

0 0.001 0.002 0.003
Time_sec

0.0002

0.0001

-0.0001

-0.0002

0

St
ra

in

0 0.001 0.002 0.003
Time_sec

0.0002

0.0001

-0.0001

-0.0002

0

St
ra

in

0 0.001 0.002 0.003
Time_sec

0.0002

0.0001

-0.0001

-0.0002

0

St
ra

in

0 0.001 0.002 0.003
Time_sec

(a)

(b) (b)

(c) (c)

Fig. 11. Left column shows FEM results, right column shows transient model II, and middle column shows experimental strain

predictions [1], for gauge 5: (a) detonation velocity of 1400.1m/s; (b) detonation velocity of 1478.8m/s and (c) detonation velocity of

1699.7m/s.

K. Mazaheri et al. / Journal of Sound and Vibration 297 (2006) 106–122 119
does not exist in this gauge. This strain gauge is located close to the flange at the beginning of the second tube
section. The amplification factor is close to 1.56 as a one degree vibrational freedom system. As the distance
from the flange at the beginning of the second tube section 2 increases, the flexural waves develop and critical
velocity appears in amplification factor.

The amplification factors predicted by the Tang model are obviously not realistic close to the critical speed
since a linear model with no damping will always predict an infinite response at the resonant frequency [1].
However, sufficiently far from the resonance, the Tang model correctly predicts that the amplification factor
approaches approximately 1 for very subcritical waves and is bounded by 2 for supercritical waves. A
maximum amplification factor of 2 is often used for shock or detonation loading. The present results show
that near the critical speed, amplification factors larger than 3 are possible in some cases. The growth of the
amplification factor with the distance from the flange is clearly shown in both the experimental data and
predictions by the transient models. Note that the analytical Tang model gives the same amplification curve
for each strain gauge since it assumes a ‘‘steady state’’ situation for a tube of infinite length. The amplifications
from the transient model I are relatively high and the peaks do not match with the correct velocities. In
general, the amplification factors and critical velocities predicted by transient model II are in better agreement
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Fig. 12. Left column shows FEM results, right column shows transient model II, and middle column shows experimental strain

predictions [1] for gauge 10: (a) detonation velocity of 1400.1m/s; (b) detonation velocity of 1478.8m/s and (c) detonation velocity of

1699.7 m/s.
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with the experimental results. Of course the best agreement with the experimental results is provided by the
FEM simulations. It is clearly seen that amplification factor is a function of velocity and has its maximum at
critical velocity. In order to precisely calculate the critical velocity, we should look for the conditions that
maximize the deflections. These conditions can be found by setting the common denominator of the first and
second terms in Eq. (31) equal to zero.

o2
n �

npV

l

� 	2

¼ 0) V ¼
onL

np
. (35)

Now it remains to find the minimum velocity from Eq. (35), which occurs at a particular n. Fig. 14 shows the
variation of velocity with mode number according to Eq. (35), which contains a minimum at the mode number
25. Thus, the critical velocity can be calculated from Eq. (35) by setting n ¼ 25. The experimental results
indicate that the critical velocity of the tube is about 1450m/s [1]. This is close to the value that was predicted
by the analytical Tang model: 1455m/s. The critical speed predicted by transient model I is higher (1543m/s)
due to the fact that in this model the effects of rotary inertia and transverse shear are neglected. However,
transient model II predicts the critical velocity as 1447.5m/s due to its enhanced formulation. The critical
velocity obtained from the finite element simulation is about 1460m/s.
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5. Conclusions

The following conclusions are drawn from the present investigation:
1.
 The critical velocity for the detonation tube with the material and geometrical properties shown in
Table 1 is predicted by Tang model as 1455m/s, by transient model I as 1543m/s, by transient model II as
1447.5m/s and by FEM as 1460m/s. The experimental critical velocity is 1450m/s.
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2.
 The asymptotic values for the amplification factor predicted by the above three models equal 1 for
subcritical waves and 2 for supercritical waves.
3.
 The finite element simulations indicate that if the effects of reflected flexural waves are neglected, the
support condition of the tube is not an important factor.
4.
 Analytical models usually predict amplification factors greater than experimental results. The amplification
factors predicted by Tang model are obviously not realistic close to the critical speed. The amplification
factors predicted by transient model II are in better agreement with the experimental results, compared to
the results obtained from transient model I. In general, the simulations obtained fromModel II are in better
agreement with the experimental and FEM results. This can be attributed to the consideration of the effects
of transverse shear and rotary inertia in the formulation of this model.
5.
 For design purposes, these analytical models are very useful and can provide initial good estimations which
may be further refined with detailed finite element analyses.

References

[1] W.M. Beltman, J.E. Shepherd, Linear elastic response of tubes to internal detonation loading, Journal of Sound and Vibration 252

(2002) 617–655.

[2] M.C. De Malherbe, R.D. Wing, A.J. Laderman, A.K. Oppenheim, response of a cylindrical shell to internal blast loading, Journal of

Mechanical Engineering Science 8 (1966) 91–98.

[3] J.E. Shepherd, Pressure loads and structural response on the BNL high-temperature detonation tube, Technical Report A-3991,

Brookhaven National Laboratory, Upton, New York, September 1992.

[4] A. Van de Ven, H. Olivier, H. Grönig, Dynamic structural response of a dust detonation tube, Seventh International Colloquium on

Dust Explosions, Bergen, 1996.

[5] A. Sperber, H.P. Schildber, S. Schlehlein, Dynamic load on a pipe caused by acetylene detonations—experiments and theoretical

approaches, Journal of Shock and Vibration 6 (1999) 29–43.

[6] T.E. Simkins, Resonance of flexural waves in gun tubes, Technical Report ARCCB-TR-87008, US Army Armament Research,

Development and Engineering Center, Watervliet, NY, July 1987.

[7] T.E. Simkins, G.A. Pflegl, E.G. Stilson, Dynamic strains in a 60mm gun tube—an experimental study, Journal of Sound and Vibration

168 (1993) 549–557.

[8] T.E. Simkins, Amplification of flexural waves in gun tubes, Journal of Sound and Vibration 172 (1994) 145–154.

[9] T.E. Simkins, The influence of transient flexural waves on dynamic strains in cylinders, Journal of Applied Mechanics—Transactions

of the American Society of Mechanical Engineers 62 (1995) 262–265.

[10] W.M. Beltman, E.N. Burcsu, J.E. Shepherd, L. Zuhal, The structural response of tubes to internal shock loading, Journal of Pressure

Vessel Technology 121 (1999) 315–322.

[11] S. Tang, Dynamic response of a tube under moving pressure, Proceedings of the American Society of Civil Engineers, Engineering

Mechanics Division, Vol. 5, October 1965, pp. 97–122.

[12] H. Reismann, Response of a pre-stressed cylindrical shell to moving pressure load, in: S. Ostrach, R.H. Scanlon (Eds.), Eighth

Midwest Mechanics Conference, Pergamon Press, Oxford, 1965, pp. 349–363.

[13] W.M. Beltman, J.E. Shepherd, The structural response of tubes to detonation and shock loading—parts I and II, Technical Report

FM98-3, California Institute of Technology, Pasadena, CA, April 1998.

[14] M. Mirzaei, K. Mazaheri, H. Biglari, Analytical modeling of the elastic response of tubes to internal detonation loading, International

Journal of Pressure Vessels and Piping 82 (2005) 883–895.


	Transient dynamic response of tubes �to internal detonation loading
	Introduction
	Analytical models
	Thin infinite shell including rotary inertia and shear deformation (Tang model)
	Case 1: 0ltVltVC0
	Case 2: VC0ltVltVC1

	Transient model I [1]
	Transient model II

	Finite element simulations
	Results and discussion
	Representative strain histories
	Verification of the models
	Comparison with FEM

	Amplifiicatiion factors

	Conclusions
	References


